Топологическое пространство - определение. Что такое Топологическое пространство
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Топологическое пространство - определение

ОБЪЕКТ ИЗУЧЕНИЯ В ТОПОЛОГИИ
Стандартная топология вещественной прямой; Топология (семейство множеств); Замкнутая топология; Открытая топология; Топология (структура)

ТОПОЛОГИЧЕСКОЕ ПРОСТРАНСТВО         
математическое понятие, обобщающее понятие метрического пространства. Топологическое пространство - множество элементов любой природы, в котором тем или иным способом определены предельные соотношения.
Топологическое пространство         

множество, состоящее из элементов любой природы, в котором тем или иным способом определены предельные соотношения. Предельные соотношения, наличие которых превращает данное множество Х в топологическое пространство, состоят в том, что для каждого подмножества А множества Х определено его замыкание, то есть множество [А], состоящее из всех элементов множества А и из предельных точек (См. Предельная точка) этого множества (если какое-либо множество является Т.п., то его элементы, независимо от их действительной природы, принято называть точками данного Т.п.). "Ввести в данное множество Х топологию", или "превратить данное множество Х в Т. п.", - это значит тем или иным способом указать замыкание [А] для каждого подмножества А множества Х. Точки множества [А] называются точками прикосновения множества А.

Каждое Метрическое пространство может быть естественным образом превращено в Т. п., поэтому говорят (допуская некоторую неточность), что метрическое пространство является частным случаем топологического. В частности, числовая прямая, евклидово пространство любого числа измерений, различные функциональные пространства могут служить примерами метрических и, следовательно, топологических пространств. Существует много способов вводить в данное множество Х топологию, то есть превращать его в Т. п.; например, в случае метрических пространств топология вводится посредством вспомогательного понятия расстояния. В очень многих случаях топология в данное множество Х вводится посредством окрестностей: для каждого элемента (для каждой "точки") множества Х некоторые подмножества множества Х выделяются в качестве окрестностей данной точки. В предположении, что окрестности определены, точка х объявляется точкой прикосновения множества А, если каждая окрестность этой точки содержит хотя бы одну точку множества А. См. также ст. Топология и литературу при ней.

Топологическое пространство         
Топологи́ческое простра́нство — множество с дополнительной структурой определённого типа (так называемой топологией);

Википедия

Топологическое пространство

Топологи́ческое простра́нство — множество, для элементов которого определено, какие из них близки друг к другу. Является центральным понятием общей топологии.

Наряду с понятием метрического пространства, является одной из разновидностей пространств в геометрии. В топологических пространствах не определены понятия расстояний, величин углов, площадей и объёмов, но возможно говорить о непрерывности, сходимости и связности. Для этого в них определяется качественное (в отличие от количественного) понятие близости элементов.

Типичными топологическими пространствами являются евклидовы пространства и их подпространства, шары и сферы, графы и произвольные симплициальные и CW-комплексы, а также поверхности и многообразия произвольной размерности.

Каждое метрическое пространство естественным образом индуцирует топологическую структуру, но разные метрические пространства могут задавать одинаковые топологические. Кроме того, современное понятие топологического пространства допускает неметризуемые пространства, то есть такие, которые не могут быть получены из метрических.

Понятие топологического пространства позволяет привнести геометрические образы в любую область математики, как бы далека от геометрии эта область ни была на первый взгляд.

Что такое ТОПОЛОГИЧЕСКОЕ ПРОСТРАНСТВО - определение